Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
J Food Sci ; 89(4): 2277-2291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488738

RESUMO

Calcium peptide chelates are developed as efficient supplements for preventing calcium deficiency. Spent hen meat (SHM) contains a high percentage of proteins but is generally wasted due to the disadvantages such as hard texture. We chose the underutilized SHM to produce peptides to bind calcium by proteolysis and aimed to investigate chelation between calcium and peptides in hydrolysate for a sustainable purpose. The optimized proteolysis conditions calculated from the result of response surface methodology for two-step hydrolysis were 0.30% (wenzyme/wmeat) for papain with a hydrolysis time of 3.5 h and 0.18% (wenzyme/wmeat) for flavourzyme with a hydrolysis time of 2.8 h. The enzymatic hydrolysate (EH) showed a binding capacity of 63.8 ± 1.8 mg calcium/g protein. Ethanol separation for EH improved the capacity up to a higher value of 68.6 ± 0.6 mg calcium/g protein with a high association constant of 420 M-1 (25°C) indicating high stability. The separated fraction with a higher amount of Glu, Asp, Lys, and Arg had higher calcium-binding capacity, which was related to the number of ─COOH and ─NH2 groups in peptide side chains according to the result from amino acid analysis and Fourier transform infrared spectroscopy. Two-step enzymatic hydrolysis and ethanol separation were an efficient combination to produce peptide mixtures derived from SHM with high calcium-binding capacity. The high percentage of hydrophilic amino acids in the separated fraction was concluded to increase calcium-binding capacity. This work provides foundations for increasing spent hen utilization and developing calcium peptide chelates based on underutilized meat.


Assuntos
Cálcio , Galinhas , Animais , Feminino , Cálcio/metabolismo , Galinhas/metabolismo , Hidrolisados de Proteína/química , Peptídeos/química , Hidrólise , Papaína/química , Aminoácidos , Cálcio da Dieta/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Carne , Etanol
2.
Food Chem ; 442: 138428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241997

RESUMO

The bitterness of soy protein isolate hydrolysates prepared using five proteases at varying degree of hydrolysis (DH) and its relation to physicochemical properties, i.e., surface hydrophobicity (H0), relative hydrophobicity (RH), and molecular weight (MW), were studied and developed for predictive modelling using machine learning. Bitter scores were collected from sensory analysis and assigned as the target, while the physicochemical properties were assigned as the features. The modelling involved data pre-processing with local outlier factor; model development with support vector machine, linear regression, adaptive boosting, and K-nearest neighbors algorithms; and performance evaluation by 10-fold stratified cross-validation. The results indicated that alcalase hydrolysates were the most bitter, followed by protamex, flavorzyme, papain, and bromelain. Distinctive correlation results were found among the physicochemical properties, influenced by the disparity of each protease. Among the features, the combination of RH-MW fitted various classification models and resulted in the best prediction performance.


Assuntos
Proteínas de Soja , Paladar , Hidrólise , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Papaína/química , Hidrolisados de Proteína/química
3.
Eur J Med Chem ; 264: 116011, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065031

RESUMO

The COVID-19 pandemic is caused by SARS-CoV-2, an RNA virus with high transmissibility and mutation rate. Given the paucity of orally bioavailable antiviral drugs to combat SARS-CoV-2 infection, there is a critical need for additional antivirals with alternative mechanisms of action. Papain-like protease (PLpro) is one of the two SARS-CoV-2 encoded viral cysteine proteases essential for viral replication. PLpro cleaves at three sites of the viral polyproteins. In addition, PLpro antagonizes the host immune response upon viral infection by cleaving ISG15 and ubiquitin from host proteins. Therefore, PLpro is a validated antiviral drug target. In this study, we report the X-ray crystal structures of papain-like protease (PLpro) with two potent inhibitors, Jun9722 and Jun9843. Subsequently, we designed and synthesized several series of analogs to explore the structure-activity relationship, which led to the discovery of PLpro inhibitors with potent enzymatic inhibitory activity and antiviral activity against SARS-CoV-2. Together, the lead compounds are promising drug candidates for further development.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Pandemias , Antivirais/farmacologia , Antivirais/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
4.
Int J Biol Macromol ; 258(Pt 1): 128812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38114011

RESUMO

The highly infectious respiratory illness 'COVID-19' was caused by SARS-CoV-2 and is responsible for millions of deaths. SARS-single-stranded viral RNA genome encodes several structural and nonstructural proteins, including papain-like protease (PLpro), which is essential for viral replication and immune evasion and serve as a potential therapeutic target. Multiple computational techniques were used to search the natural compounds that may block the protease and deubiquitinase activities of PLpro. Five compounds showed strong interactions and binding energy (ranges between -8.18 to -8.69 Kcal/mol) in our in-silico studies. Interestingly, those molecules strongly bind in the PLpro active site and form a stable complex, as shown by microscale molecular dynamic simulations (MD). The dynamic movements indicate that PLpro acquires closed conformation by the attachment of these molecules, thereby changing its normal function. In the in-vitro evaluation, compound COMP4 showed the most potent inhibitory potential for PLpro (protease activity: 2.24 ± 0.17 µM and deubiquitinase activity: 1.43 ± 0.14 µM), followed by COMP1, 2, 3, and 5. Furthermore, the cytotoxic effect of COMP1-COMP5 on a human BJ cell line revealed that these compounds demonstrate negligible cytotoxicity at a dosage of 30 µM. The results suggest that these entities bear therapeutic efficacy for SARS-CoV-2 PLpro.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Papaína/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2 , Produtos Biológicos/farmacologia , Enzimas Desubiquitinantes , Antivirais/farmacologia
5.
PLoS Pathog ; 19(12): e1011872, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38096325

RESUMO

Deubiquitination of cellular substrates by viral proteases is a mechanism used to interfere with host cellular signaling processes, shared between members of the coronavirus- and arterivirus families. In the case of Arteriviruses, deubiquitinating and polyprotein processing activities are accomplished by the virus-encoded papain-like protease 2 (PLP2). Several studies have implicated the deubiquitinating activity of the porcine reproductive and respiratory syndrome virus (PRRSV) PLP2 in the downregulation of cellular interferon production, however to date, the only arterivirus PLP2 structure described is that of equine arteritis virus (EAV), a distantly related virus. Here we describe the first crystal structure of the PRRSV PLP2 domain both in the presence and absence of its ubiquitin substrate, which reveals unique structural differences in this viral domain compared to PLP2 from EAV. To probe the role of PRRSV PLP2 deubiquitinating activity in host immune evasion, we selectively removed this activity from the domain by mutagenesis and found that the viral domain could no longer downregulate cellular interferon production. Interestingly, unlike EAV, and also unlike the situation for MERS-CoV, we found that recombinant PRRSV carrying PLP2 DUB-specific mutations faces significant selective pressure to revert to wild-type virus in MARC-145 cells, suggesting that the PLP2 DUB activity, which in PRRSV is present as three different versions of viral protein nsp2 expressed during infection, is critically important for PRRSV replication.


Assuntos
Equartevirus , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Cavalos , Suínos , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Mutagênese , Peptídeo Hidrolases/genética , Replicação Viral , Interferons/genética , Proteínas não Estruturais Virais/metabolismo
6.
Se Pu ; 41(11): 995-1001, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-37968818

RESUMO

The aim of this study is to explore differences in the peptidomics of Saccharomyces pastorianus protein hydrolysates treated with different enzymes. Briefly, differences in the peptide fingerprints and active peptides of neutral protease/papain-hydrolyzed S. pastorianus were analyzed using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) combined with PEAKS Online 1.7 analysis software, Peptide Ranker, and the BIOPEP database. Compared to traditional databases, the PEAKS Online uses de novo sequencing for analysis to obtain oligopeptides smaller than pentapeptides. It provides more comprehensive data of the peptide sample. In this study, enzymatic hydrolysates of S. pastorianus protein were prepared under the optimum conditions of neutral protease and papain respectively. In total, 7221 and 7062 polypeptides were identified in the hydrolysates of neutral protease and papain, respectively; among these polypeptides, 980 were common to the two enzymes. The 6241 and 6082 unique peptides found in the hydrolysates of neutral protease and papain, respectively, indicated that the peptide fingerprints of the two hydrolysates are quite different. Peptide Ranker predicted that 3013 (41.73%) and 3095 (43.83%) peptides were potentially bioactive in the hydrolysates of neutral protease and papain, respectively. According to the BIOPEP database, neutral protease and papain contained 295 and 357 active peptides, respectively; these peptides were mainly composed of angiotensin converting enzyme (ACE) inhibitors and dipeptidyl peptidase IV inhibitors and antioxidant peptides. The number of active peptides in the hydrolysate of papain was higher than that in the hydrolysate of neutral protease, but the total ion intensity of active peptides in the former was lower than that in the latter. This study revealed the influence of protease type on the composition of enzymatic hydrolysates from S. pastorianus protein. The above results provide a reference for the development of functional products of S. pastorianus protein peptides and the high-value utilization of yeast resources.


Assuntos
Papaína , Hidrolisados de Proteína , Papaína/química , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/análise , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Hidrólise
7.
J Phys Chem Lett ; 14(45): 10278-10284, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37942913

RESUMO

To date, mechanistic insights into many clinical drugs against COVID-19 remain unexplored. Dexamethasone, a corticosteroid, is one of them. While treating the entire corticosteroid database, including vitamins D2 and D3, with cutting-edge computational techniques, several intriguing results are unfolded. From the top-notch candidates, dexamethasone is likely to inhibit the viral main protease (Mpro), with vitamin D3 exhibiting multitarget [Mpro, papain-like protease (PLpro), and nucleocapsid protein (N-pro)] roles and ciclesonide's dynamic flipping disinterring a cryptic allosteric site in the PLpro enzyme. The results rationalize why these drugs improve the health of COVID-19 patients. Understanding an enzyme's secret binding site is essential to understanding how the enzyme works and how to inhibit its function. Ciclesonide's allosteric inhibition could not only jeopardize PLpro's catalytic role in polyprotein processing but also make it less vulnerable to the host body's defense machinery. Hotspot residues in the identified allosteric site could be considered for effective therapeutic designs against PLpro.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , Sítio Alostérico , SARS-CoV-2/metabolismo , Ubiquitina , Simulação de Dinâmica Molecular , Sítios de Ligação , Dexametasona , Antivirais/química , Inibidores de Proteases
8.
Biochemistry ; 62(23): 3420-3429, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989209

RESUMO

Cystatins encode a high functional variability not only because of their ability to inhibit different classes of proteases but also because of their propensity to form oligomers and amyloid fibrils. Phytocystatins, essential regulators of protease activity in plants, specifically inhibit papain-like cysteine proteases (PLCPs) and legumains through two distinct cystatin domains. Mammalian cystatins can form amyloid fibrils; however, the potential for amyloid fibril formation of phytocystatins remains unknown. In this study, we demonstrate that Arabidopsis thaliana phytocystatin 6 (AtCYT6) exists as a mixture of monomeric, dimeric, and oligomeric forms in solution. Noncovalent oligomerization was facilitated by the N-terminal cystatin domain, while covalent dimerization occurred through disulfide bond formation in the interdomain linker. The noncovalent dimeric form of AtCYT6 retained activity against its target proteases, papain and legumain, albeit with reduced inhibitory potency. Additionally, we observed the formation of amyloid fibrils by AtCYT6 under acidic pH conditions and upon heating. The amyloidogenic potential could be attributed to the AtCYT6's N-terminal domain (AtCYT6-NTD). Importantly, AtCYT6 amyloid fibrils harbored inhibitory activities against both papain and legumain. These findings shed light on the oligomerization and amyloidogenic behavior of AtCYT6, expanding our understanding of phytocystatin biology and its potential functional implications for plant protease regulation.


Assuntos
Arabidopsis , Cistatinas , Animais , Papaína/química , Amiloide/química , Cistatinas/química , Cistatinas/farmacologia , Peptídeo Hidrolases , Mamíferos
9.
Antiviral Res ; 220: 105758, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38008194

RESUMO

Coronavirus (CoV) replication requires efficient cleavage of viral polyproteins into an array of non-structural proteins involved in viral replication, organelle formation, viral RNA synthesis, and host shutoff. Human CoVs (HCoVs) encode two viral cysteine proteases, main protease (Mpro) and papain-like protease (PLpro), that mediate polyprotein cleavage. Using a structure-guided approach, a phenothiazine urea derivative that inhibits both SARS-CoV-2 Mpro and PLpro protease activity was identified. In silico docking studies also predicted the binding of the phenothiazine urea to the active sites of structurally similar Mpro and PLpro proteases from distantly related alphacoronavirus, HCoV-229 E (229 E), and the betacoronavirus, HCoV-OC43 (OC43). The lead phenothiazine urea derivative displayed broad antiviral activity against all three HCoVs tested in cellulo. It was further demonstrated that the compound inhibited 229 E and OC43 at an early stage of viral replication, with diminished formation of viral replication organelles, and the RNAs that are made within them, as expected following viral protease inhibition. These observations suggest that the phenothiazine urea derivative readily inhibits viral replication and may broadly inhibit proteases of diverse coronaviruses.


Assuntos
Peptídeo Hidrolases , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Papaína/química , Proteases Virais , Fenotiazinas/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química
10.
Food Res Int ; 173(Pt 2): 113473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803796

RESUMO

This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, ß-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.


Assuntos
Antioxidantes , Bromelaínas , Antioxidantes/farmacologia , Antioxidantes/química , Papaína/química , Hidrolisados de Proteína/química , Proteínas de Soja , Aminoácidos , Subtilisinas/química
11.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446636

RESUMO

Okara is a solid byproduct created during the processing of soy milk. The production of protein hydrolysates utilizing enzymatic tests such as papain can result in the production of bioactive peptides (BPs), which are amino acid sequences that can also be produced from the okara protein by hydrolysis. The objective of this study was to investigate the antioxidant activities of okara hydrolysates using papain, based on the in silico and in vitro assays using the papain enzyme. We found that using the in silico assessment, the antioxidant peptides can be found from the precursor (glycinin and conglycinin) in okara. When used as a protease, papain provides the maximum degree of hydrolysis for antioxidative peptides. The highest-peptide-rank peptide sequence was predicted using peptide ranks such as proline-histidine-phenylalanine (PHF), alanine-aspartic acid-phenylalanine (ADF), tyrosine-tyrosine-leucine (YYL), proline-histidine-histidine (PHH), isoleucine-arginine (IR), and serine-valine-leucine (SVL). Molecular docking studies revealed that all peptides generated from the parent protein impeded substrate access to the active site of xanthine oxidase (XO). They have antioxidative properties and are employed in the in silico approach to the XO enzyme. We also use papain to evaluate the antioxidant activity by using in vitro tests for protein hydrolysate following proteolysis. The antioxidant properties of okara protein hydrolysates have been shown in vitro, utilizing DPPH and FRAP experiments. This study suggests that okara hydrolysates generated by papain can be employed as natural antioxidants in food and for further applications, such as active ingredients for antioxidants in packaging.


Assuntos
Antioxidantes , Hidrolisados de Proteína , Antioxidantes/farmacologia , Antioxidantes/química , Hidrolisados de Proteína/química , Papaína/química , Simulação de Acoplamento Molecular , Histidina , Leucina , Hidrólise , Peptídeos/farmacologia , Peptídeos/química
12.
Mar Drugs ; 21(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37504926

RESUMO

The study aimed to investigate the effects of alcalase, papain, flavourzyme, and neutrase on the structural characteristics and bioactivity stability of Cucumaria frondosa intestines and ovum hydrolysates (CFHs). The findings revealed that flavourzyme exhibited the highest hydrolysis rate (51.88% ± 1.87%). At pH 2.0, the solubility of hydrolysate was the lowest across all treatments, while the solubility at other pH levels was over 60%. The primary structures of hydrolysates of different proteases were similar, whereas the surface hydrophobicity of hydrolysates was influenced by the types of proteases used. The hydrolysates produced by different proteases were also analyzed for their absorption peaks and antioxidant activity. The hydrolysates of flavourzyme had ß-fold absorption peaks (1637 cm-1), while the neutrase and papain hydrolysates had N-H bending vibrations. The tertiary structure of CFHs was unfolded by different proteases, exposing the aromatic amino acids and red-shifting of the λ-peak of the hydrolysate. The alcalase hydrolysates showed better antioxidant activity in vitro and better surface hydrophobicity than the other hydrolysates. The flavourzyme hydrolysates displayed excellent antioxidant stability and pancreatic lipase inhibitory activity during gastrointestinal digestion, indicating their potential use as antioxidants in the food and pharmaceutical industries.


Assuntos
Cucumaria , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Papaína/química , Antioxidantes/farmacologia , Hidrólise , Intestinos , Subtilisinas/química , Hidrolisados de Proteína/química
13.
J Am Chem Soc ; 145(30): 16669-16677, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478405

RESUMO

Papain-like protease (PLpro) from severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a prime target for the development of antivirals for Coronavirus disease 2019 (COVID-19). However, drugs that target the PLpro protein have not yet been approved. In order to gain insights into the development of a PLpro inhibitor, conformational dynamics of PLpro in complex with GRL0617, the most well-characterized PLpro inhibitor, were investigated using nuclear magnetic resonance (NMR) spectroscopy in solution. Although mutational analyses demonstrated that the L162 sidechain interaction is responsible for the affinity for GRL0617, NMR analyses revealed that L162 in the inhibitor-binding pocket underwent conformational exchange and was not fixed in the conformation in which it formed a contact with ortho-methyl group of GRL0617. The identified conformational dynamics would provide a rationale for the binding mechanism of a covalent inhibitor designed based on GRL0617.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/metabolismo , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Sítios de Ligação , Antivirais/farmacologia , Espectroscopia de Ressonância Magnética
14.
J Biol Chem ; 299(6): 104801, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37164157

RESUMO

Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function and provide structural characterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein 1 as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.


Assuntos
Cisteína Proteases , Papaína , Humanos , Domínio Catalítico , Centríolos/metabolismo , Cisteína Proteases/química , Cisteína Proteases/classificação , Cisteína Proteases/metabolismo , Enzimas Desubiquitinantes/metabolismo , Modelos Moleculares , Papaína/química , Papaína/classificação , Bases de Dados de Proteínas
15.
Sci Signal ; 16(783): eade1985, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130166

RESUMO

Coronaviruses that can infect humans can cause either common colds (HCoV-NL63, HCoV-229E, HCoV-HKU1, and HCoV-OC43) or severe respiratory symptoms (SARS-CoV-2, SARS-CoV, and MERS-CoV). The papain-like proteases (PLPs) of SARS-CoV, SARS-CoV-2, MERS-CoV, and HCoV-NL63 function in viral innate immune evasion and have deubiquitinating (DUB) and deISGylating activities. We identified the PLPs of HCoV-229E, HCoV-HKU1, and HCoV-OC43 and found that their enzymatic properties correlated with their ability to suppress innate immune responses. A conserved noncatalytic aspartic acid residue was critical for both DUB and deISGylating activities, but the PLPs had differing ubiquitin (Ub) chain cleavage selectivities and binding affinities for Ub, K48-linked diUb, and interferon-stimulated gene 15 (ISG15) substrates. The crystal structure of HKU1-PLP2 in complex with Ub revealed binding interfaces that accounted for the unusually high binding affinity between this PLP and Ub. In cellular assays, the PLPs from the severe disease-causing coronaviruses strongly suppressed innate immune IFN-I and NF-κB signaling and stimulated autophagy, whereas the PLPs from the mild disease-causing coronaviruses generally showed weaker effects on immune suppression and autophagy induction. In addition, a PLP from a SARS-CoV-2 variant of concern showed increased suppression of innate immune signaling pathways. Overall, these results demonstrated that the DUB and deISGylating activities and substrate selectivities of these PLPs differentially contribute to viral innate immune evasion and may affect viral pathogenicity.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina/metabolismo , Imunidade Inata
16.
Protein Expr Purif ; 207: 106267, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37030644

RESUMO

Coronavirus Papain-like protease (PLpro) mediates the cleavage of viral polyproteins and assists the virus escaping from innate immune response. Thus, PLpro is an attractive target for the development of broad-spectrum drugs as it has a conserved structure across different coronaviruses. In this study, we purified SARS-CoV-2 PLpro as an immune antigen, constructed a nanobody phage display library, and identified a set of nanobodies with high affinity for SARS-CoV-2. In addition, enzyme activity experiments demonstrated that two nanobodies had a significant inhibitory effect on the PLpro. These nanobodies should therefore be investigated as candidates for the treatment of coronaviruses.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Proteases Semelhantes à Papaína de Coronavírus , SARS-CoV-2 , Peptídeo Hidrolases , Papaína/química
17.
Eur J Med Chem ; 254: 115380, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075625

RESUMO

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Células CACO-2 , Pandemias , Peptídeo Hidrolases/metabolismo , Antivirais/farmacologia , Antivirais/química
18.
Biomacromolecules ; 24(4): 1798-1809, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36996092

RESUMO

End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.


Assuntos
Aminoácidos , Peptídeo Hidrolases , Papaína/química , Peptídeos/química , Oligopeptídeos/química , Polímeros , Catálise , Ésteres
19.
Int J Biol Macromol ; 235: 123872, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-36871683

RESUMO

Antigen binding fragments (Fabs) employed in research are typically generated by the papain digestion of monoclonal antibodies. However, the interaction between papain and antibodies at the interface remains unclear. Herein, we developed ordered porous layer interferometry for the label-free monitoring of the interaction between the antibody and papain at liquid-solid interfaces. Human immunoglobulin G (hIgG) was used as the model antibody, and different strategies were employed to immobilize it on the surface of silica colloidal crystal (SCC) films which are optical interferometric substrates. It was observed that different immobilization strategies induced different changes in the optical thickness (OT) of SCCs. The order of rate of the changes of OT from largest to smallest was IgG immobilized by protein A orientation, glutaraldehyde coupling, and physical adsorption. This phenomenon can be explained by the varied orientations of the antibodies created at the interface by the different modification procedures. The Fab-up orientation maximized the exposure of the hinge region sulfhydryl group and easily underwent conformational transitions because hIgG was immobilized by protein A. This process stimulates papain to produce the highest degree of activity, resulting in the greatest decrease in OT. This study provides insights into the catalysis of papain on antibodies.


Assuntos
Anticorpos Monoclonais , Papaína , Humanos , Anticorpos Monoclonais/química , Digestão , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/metabolismo , Papaína/química , Proteína Estafilocócica A , Propriedades de Superfície , Dióxido de Silício/química
20.
Meat Sci ; 200: 109147, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36848733

RESUMO

The impact of papain and/or ultrasound treatments on tenderization of semitendinosus muscle through a proteomic approach was studied. Sixteen bovine muscles were submitted to the following treatments: aging at 3 °C (Control), papain injection (PI), ultrasound (US), PI followed by US (PIUS) and US followed by PI (USPI). pH, myofibrillar fragmentation indices (MFI), soluble collagen, texture profile and changes of myofibrillar proteins were investigated after 2, 24, 48 and 96 h of storage. The highest MFI and soluble collagen content were found in PI, PIUS and USPI samples while control samples showed the lowest values. PI samples showed the lowest WBSF and hardness values until 48 h of storage while at 96 h meat from USPI treatment showed WBSF value comparable to PI treatment. The lowest values of cohesiveness, gumminess and chewiness were found in PI samples during all storage times. Proteomic analysis revealed a different quantity and expression of proteins among tenderization treatments. US treatment did not exhibit a significant ability to degrade muscle proteins, while, all treatments containing papain, showed a greater ability to hydrolyse and degrade myofibrillar proteins. PI promoted intense proteolysis leading to an early tenderization process; on the contrary, in PIUS and USPI treatments the sequence of treatments was relevant on meat tenderization. Particularly, USPI treatment, after 96 h, reached the same improvement in tenderness of enzymatic treatment but with slower hydrolysing rate; this could be determinant to preserve textural structure.


Assuntos
Músculos Isquiossurais , Papaína , Animais , Bovinos , Papaína/química , Músculo Esquelético/química , Manipulação de Alimentos , Proteômica , Carne/análise , Proteínas Musculares/análise , Colágeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...